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Geometry and Elasticity of Strips and Flowers
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We solve several problems that involve imposing metrics on surfaces. The problem of
a strip with a linear metric gradient is formulated in terms of a Lagrangian similar
to those used for spin systems. We are able to show that the low energy state of long
strips is a twisted helical state like a telephone cord. We then extend the techniques
used in this solution to two-dimensional sheets with more general metrics. We find
evolution equations and show that when they are not singular, a surface is determined
by knowledge of its metric, and the shape of the surface along one line. Finally, we
provide numerical evidence by minimizing a suitable energy functional that once these
evolution equations become singular, either the surface is not differentiable, or else the
metric deviates from the target metric.
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1. INTRODUCTION

In 2002, Sharon et al. performed experiments by tearing sheets of plastic to
produce ruffled edges.(25) The ripping process is quite uniform along the direction
of the tear, and the shape that spontaneously results consists in convoluted shapes
with much less symmetry than the original deformation. The deformations in the
experiments are very large and cannot be treated by any linear theory.

Several papers have already been written on the interpretation of these
experiments.(2,3,18−20) They established that one could study the problem by choos-
ing a metric function suggested by the physical process that deformed the sheet,
and trying to determine what surfaces were compatible with this metric. Much of
the effort in these papers was devoted to exploring the problem of a long thin strip
of material with a linear metric gradient in one direction. This strip problem was
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not solved in generality. Furthermore, the mathematical problem related to the
original deformed sheets was not described clearly. On the one hand, the papers
spoke of imposing a metric on a sheet, while on the other there were many indica-
tions that the actual metric of the final shape adopted by the sheet was something
else.

Our goal in this paper is clear up confusions generated in previous discussions
of the experiments, and to present some new results on the relation between metrics
and surfaces. The three main contributions are

1. We solve completely the strip problem that was defined but only partly
solved in Ref. 18

2. We find differential equations suitable to construct surfaces from metrics
when such surfaces exist, and construct explicitly some surfaces from the
differential equations.

3. We present a variational technique to construct a surface with metric
nearby to a desired target metric, even when surfaces with the target
metric do not exist.

These three contributions are connected. In Sec. 2 we address the strip problem.
We employ Euler angles(12) in a way that allows us to overcome numerical dif-
ficulties that had plagued previous approaches. This representation enables us
to obtain a complete solution of the problem. Thus, when in Sec. 3 we turn to
the more general problem of obtaining surfaces from an arbitrary metric, we use
a similar representation and find corresponding numerical advantages. We are
able to construct some surfaces explicitly by specifying them along a line and
integrating forward with knowledge of the metric alone. However, as we slowly
perturb the metric, this procedure breaks down. We show explicitly in Sec. 4
that one can specify target metrics for which no three-dimensional embeddings
exist.

A problem very similar to the strip problem we pose in Section 2 has been
studied in a series of papers by Goriely, Tabor, and Nizette.(9,10,11,13−15) Most of
their papers focus upon dynamical waves traveling on straight strips that have
been twisted—a more challenging problem for strips than the one we address. In
a particularly pleasing paper on the twisting of tendrils, they also consider strips
with spontaneous curvature(14) and find helical solutions such as those we have
described. Our contribution to this problem is the finding that putting it into a
variational form makes it much easier to solve numerically.

Other questions we consider in this paper are even older. The idea of con-
structing a surface from a given metric with differential equations goes back to
Darboux.(1,16,26) What new do we bring to this topic? We set about the explicit
task of constructing surfaces numerically, rather than stopping when a proof of
existence has been obtained. There are several things we learn from this pro-
cess. First, we obtain some new differential equations that are more suitable for



Geometry and Flowers 1071

numerical purposes than those of Darboux. In particular, for these differential
equations the boundary conditions can be given explicitly, while for Darboux’s
equations they are determined implicitly. Second, we discover that the vanishing
of a denominator that appears both in the Darboux equations and in our variant
of them is closely connected with the impossibility of constructing surfaces from
certain metrics.

Another line of research with some common elements is shell theory, where
numerical methods are far advanced.(4,7,17,23) However, the question normally
posed in shell theory is different from the one we have set ourselves. Shell theory
presumes an initial surface to be known, and the question is whether it is rigid,
and how it responds to small applied stresses or displacements. Our task, instead,
is to determine whether surfaces exist at all, and if they do to find them.

2. GROUND STATE FOR TWISTED STRIPS

Reference (24) shows a number of thin strips cut from the edge of a leaf. Each
of them curls up into a circle, with the curvature of each strip depending upon the
gradient of the metric at that point in the leaf. Such observations suggested that the
rippling pattern at the edge of a leaf could be understood by focusing upon a thin
strip of material with a metric gradient. Such a strip, freely allowed to seek out its
lowest energy state simply curls up into a circle. Therefore the additional constraint
was added that the two ends of the strip were constrained to lie separated from each
other at a distance λ.(18) This problem yielded nontrivial solutions.(2,18−20) Certain
special cases could be found analytically. Somewhat more general solutions could
be found numerically. However, the numerical procedures were not very stable,
and left open a number of questions. For example, there was some speculation that
as the length L of the curved strip became infinite with L/λ kept finite, the lowest-
energy state might be fractal. These speculations were incorrect, and deserve to
be corrected.

By finding a suitable mathematical representation of this problem, we are
able to solve it completely. The final answer is very simple. The lowest energy
state of a curled strip whose ends have been pulled apart is a helical shape like a
spring. Depending upon exactly where the two ends have been placed, the shape
adjusts near the ends to reach required locations and orientations. If the strip is
constrained not to exhibit any net twist, it accommodates this requirement through
a kink in the middle, with helices of opposite orientation on either side—precisely
the solutions described by Goriely and Tabor.(14)

This conclusion seems obvious in retrospect, but it was not so obvious when
the problem was first stated, and we therefore explain the steps by which we
obtained it. The mathematical representations we employ are generalized and
used again in later sections.
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Fig. 1. The buckled strips studied in this section can be examined by cutting out this circular strip, of
radius R and width w. Roughly speaking, the main question addressed here is to predict the shape of
the strip when the two ends are pulled apart to some specified distance and relative orientation. For the
general solutions studied in this section, the total length L of the strip need not equal 2π R.

2.1. Problem Setting

We briefly review the specification of the strip problem. Consider a circular
strip of paper, as shown in Fig. 1, of radius R, length L = 2π R, width w, and
thickness t . The length L can be arbitrary, and may be greater or less than 2π R.
We will be interested in strips where the following limits apply:

(w

R

)2
� t

R
� w

R
� L

R
. (1)

When these conditions hold, the energy of the strip takes a very simple form as a
functional of a line passing through the center of the strip.(18)

In particular, let s be the arc length along the center of the strip. The low-
energy conformations of the strip are captured by two orthonormal vectors r̂1(s)
and r̂2(s), where r̂1 points along the arc s, and r̂2 lies in the plane of the strip and
is orthogonal to r̂1. Define also r̂3 = r̂1 × r̂2, so as to obtain a set of unit vectors
that describes in a natural way the local orientation of the strip. The location �r (s)
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of each point along the center-line of the strip can be obtained from

�r (s) =
∫ s

0
ds ′ r̂1(s ′). (2)

At each point s ′ along the way, the precise orientation of the strip is specified by
the unit vector r̂2, or equivalently by the unit vector r̂3, which is normal to the
strip. Therefore, the vectors r̂1(s) and r̂2(s) contain all the information necessary
to deduce the shape of the strip when it is embedded in three-dimensional space.
The inequalities (1) ensure that the strip remains essentially flat and featureless in
the direction pointing along r̂2.

In terms of the vectors r̂1(s) and r̂2(s) the energy of the strip is given by(1,18)

U =
∫ L

0
ds E(s), (3)

where

E = C1

2
(|r̂ ′

1|2 − 1/R2) + C2

2
(|r̂ ′

2|2 − 1/R2), (4)

and primes indicate derivatives with respect to arc length s.
This energy is subject to two constraints. The first is a local constraint that

results from the fact that the strip has a metric gradient in the direction of r̂2 that
causes it to want to curl up with radius of curvature R. This constraint is captured
by the condition

r̂ ′
1 · r̂2 = −r̂ ′

2 · r̂1 = 1/R. (5)

The second constraint is that the ends of the strip be pulled apart by some
distance; this constraint prevents the strip from simply curling up into a circle. We
impose this constraint through

(�r(L) − �r (0)) · ẑ = λ. (6)

That is, the z component of the difference between starting and ending points of
the strip is constrained to have value λ. By scanning through values of λ, one
equivalently scans through all allowed distances between the starting and ending
point of the strip. The constraint in the form of Eq. (6) is much easier to work
with formally than if it were literally expressed in terms of end-to-end distance.
For definiteness, we choose a fixed (laboratory) frame as shown in Fig. 1. The ẑ
axis is taken to be perpendicular to the plane defined by the initial (undeformed)
circular strip, while the x̂ and ŷ axes point along the initial directions of r̂1 and r̂2

at one of the endpoints of the strip.
The trihedral r̂1, r̂2, r̂3 uses nine coordinates to represent the orientation of the

strip, when in fact only three are needed.(12) Further analysis is greatly simplified
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by rewriting the unit vectors in terms of Euler angles (Ref. 8 Eq. 4.46), through

r̂1 = [cos ψ cos φ − cos θ sin φ sin ψ, cos ψ sin φ + cos θ cos φ sin ψ, sin θ sin ψ];

r̂2 = [− sin ψ cos φ − cos θ sin φ cos ψ, − sin ψ sin φ + cos θ cos φ cos ψ, sin θ cos ψ];

r̂3 = [sin θ sin φ − sin θ cos φ, cos θ ].
(7)

With this representation, we can rewrite the local constraint Eq. 5 as

cos θ φ′ + ψ ′ = 1/R; (8)

again, primes refer to derivatives with respect to the arc length s.
Writing out Eq. (4) in terms of the Euler angles one has

E = 1

2

[
(C2 − C1) cos2 ψ + C1

]
θ ′2

+ (C2 − C1) cos ψ sin ψ sin θ φ′θ ′

+ 1

2

[
(C1 − C2) cos2 ψ + C2

]
sin2 θ φ′2. (9)

In order to impose the global constraint Eq. (6), we will employ a Lagrange
multiplier, and write down the Lagrangian

L = 1

2

[
(C2 − C1) cos2 ψ + C1

]
θ ′2

+ (C2 − C1) cos ψ sin ψ sin θ φ′θ ′

+ 1

2

[
(C1 − C2) cos2 ψ + C2

]
sin2 θ φ′2

− h sin ψ sin θ. (10)

Note that φ′ appears in Eq. (10), but not φ itself. This fact will allow for further
simplification.

The constants C1 and C2 depend upon elastic properties of the strip. For a
particular case studied in Ref. 19, they are related through 2C2 = 3C1. Materials
with different elastic properties would give different constants, so we take C1 and
C2 as free variables. The structure of the equations is particularly simple when
C1 = C2, so we will begin with that case, and return later to the more general
situation.

Adopting C1 = C2 = 1, the Lagrangian of Eq. (10) simplifies to

L = 1

2
θ ′2 + 1

2
φ′2 sin2 θ − h sin ψ sin θ. (11)
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All appearances of φ can now be eliminated by employing the local constraint
Eq. (8) to give

L = 1

2
θ ′2 + 1

2
(ψ ′ − 1/R)2 tan2 θ − h sin ψ sin θ. (12)

Similar Lagrangians appear in the study of spin systems.(5) The equations of
motion following from Eq. (12) are

[(ψ ′ − 1/R) tan2 θ ]′ = −h cos ψ sin θ (13)

θ ′′ = (ψ ′ − 1/R)2 sin θ

cos3 θ
− h sin ψ cos θ. (14)

2.2. Particular Solution

Reference 18 provided a family of exact solutions, and we search for these
again with this new formalism. We find that they emerge if one sets h = 0. In this
case, one immediately integrates Eq. (13) to obtain

(ψ ′ − 1/R) tan2 θ = β, (15)

where β is an integration constant. Inserting this relation into Eq. (14) and inte-
grating gives

θ ′ =
√

α2 − β2/ sin2 θ

⇒ cos θ = −
√

1 − (β/α)2 sin(αs), (16)

where α is an additional integration constant. Without loss of generality one can
choose α > 0. Note from Eq. (16) that α > β if the solutions are to remain real.

For ψ one obtains

ψ = tan−1((β/α) tan(αs)) − (β − 1/R)s + ψ0. (17)

Similarly, for φ one obtains

φ = − tan−1(
√

(α/β)2 − 1 cos(αs)) + φ0; (18)

the integration constants ψ0 and φ0 give the value of ψ and φ when s = 0.
The global constraint Eq. (6) requires that

∫ L

0
ds sin θ sin ψ = λ. (19)

As λ becomes large, it is only possible to satisfy Eq. (19) if sin θ and sin ψ have
the same period. Comparing Eqs. (17) and (16), one sees that this condition can
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be satisfied by taking

β = α + 1/R. (20)

With this choice, one has

sin θ sin ψ = r̂1 · ẑ = (αR + sin2(αs))/(αR), (21)

which with a bit of manipulation upon setting R = 1 reproduces Eq. (41a) in
Ref. 18. Note that the x axis in that reference corresponds to the z axis here. The
remainder of the special solution obtained previously can be recovered as well.
Since this special solution depends upon setting h = 0, or equivalently to fixing a
relationship between λ and L not required by the original problem, we move to a
numerical approach capable of solving the problem in greater generality.

2.3. Numerical Solutions

We can obtain reliable numerical ground states of Eq. (11) by changing the
form of the Lagrange multiplier to enforce the global constraint in a fashion that
involves a positive definite functional:

F =
∫ L

0
ds

[
1

2
θ ′2 + 1

2
(ψ ′ − 1/R)2 tan2 θ

]

+ H

(
λ −

∫ L

0
ds sin ψ sin θ

)2

, (22)

where H is chosen on the order of 100. To find solutions, we simply minimize F .
In the minimization procedure we fix boundary conditions on θ and ψ at

s = 0 and s = L . We may also choose the initial (s = 0) value of φ, but its final
(s = L) value is left free to adjust according to Eq. (8). Now we keep one of the
endpoints of the strip fixed and orient corresponding initial directions of r̂1 and
r̂2 along the x̂ and ŷ axes of the laboratory frame. Noting that when θ = 0, the
orientation of the trihedral depends only upon φ + ψ , the initial values of the
Euler angles are set at

θ (0) = 0, ψ(0) + φ(0) = 0. (23)

At the other endpoint, the values of θ and ψ are chosen arbitrarily; e.g.,

θ (L) = π/3, ψ(L) = π/4, (24)

while the end-to-end distance is controlled by the parameter λ. A numerical
solution for L = 13 and λ = 0.75L yields values for θ and ψ shown in Fig. 2.
The angle φ = φ(s) is obtained by an elementary integration of Eq. (8), and the
complete orthonormal trihedral from Eq. (7). It is then straightforward to calculate
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Fig. 2. Plot of Euler angles θ and φ for system with total length L = 13, constrained to have height
in ẑ direction λ = .75L . Note that apart from some variation near the endpoints needed to obey the
boundary conditions, both angles go to constant values throughout most of the length of the sample.

�r = �r (s) from Eq. (2) which determines the relative position of the strip in three-
dimensional space, as illustrated in Fig. 3(a).

One property of the solution that might seem unsatisfactory is that the strip
wraps a number of times around the ẑ axis. If one were to grab two ends of a
strip and pull them apart, this would not be allowed. If one wants to find energy-
minimizing solutions without any net twist around the vertical axis, the following
strategy is effective: Take a solution obeying the boundary conditions

θ (L) = π/2, ψ(L) = π/2, (25)

produce a mirror image with z → −z, x → x , y → y. The resulting function
also minimizes the functional F . It can be glued on to the solution found so
far, joining smoothly to it at s = L because of Eq. (25), and will continue on to
terminate at (0, 0, 2λ) when s = 2L . The second half of the solution reverses the
twist produced by the first half. In all cases we have checked, solutions of this type
are the lowest-energy solutions without net twist.

A notable feature of Fig. 2 and others like it is that the angles θ and ψ

quickly approach constant values away from the endpoints, which do not depend
on the specific boundary conditions (23) and (24). Thus we conclude that for long
strips, the energy minimizing solutions have the following properties: θ and ψ are
constants such that

sin ψ sin θ = λ/L, (26)

in order to satisfy the global constraint. A physical explanation for this finding is
that the system strongly resembles a one-dimensional ferromagnet in an external
field.(5) The lowest energy states of such systems involve all spins pointing along
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Fig. 3. (a) Three-dimensional visualization of solution shown in Fig. 2. (b) Visualization of low-energy
solution for a long strip with λ/L = 0.625. The strip winds in helical fashion around the ẑ axis.

the field. If the ends of the ferromagnet are constrained to point in some different
direction, then the ground state is obtained still by having spins point along the
field almost everywhere, but at the ends they twist to the imposed direction over
a length that is characteristic of the width of domain walls. Our system behaves
similarly, and when C1 = C2 = 1, the width of the boundary region is of order
unity.

According to Eq. (13), cos ψ sin θ = 0, which is compatible with Eq. (26)
only if

ψ = π/2, sin θ = λ/L. (27)

For solutions obeying Eq. (19), the corresponding energy density

E = 1

2R2
tan2 θ = 1

2R2

λ2

L2 − λ2
(28)

is also constant, independent of s. Nevertheless, the solution oscillates because of
Eq. (8), which implies that

φ = s

R cos θ
= s

R
√

1 − (λ/L)2
. (29)
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The period of oscillation is given by

sosc = 2π R cos θ = 2π R
√

1 − (λ/L)2. (30)

and the distance the solution travels when s traverses this arc-length is

zosc = 2π R sin θ cos θ = 2π R
√

1 − (λ/L)2
λ

L
. (31)

This last expression gives the period of oscillation one would measure upon taking
a strip with L � R and pinning its ends at distance λ in the laboratory. A three-
dimensional visualization of such a strip appears in Figure 3(b).

Thus we arrive at the conclusion that long strips with metric gradients
minimize their energy by curling up like telephone cords. They deviate from
this quasi-uniform solution only when they must maneuver near the ends to
obey boundary conditions, or form a kink in the middle to produce a solu-
tion with no net twist. The problem does not have elaborate pattern-forming
solutions.

Returning to the general case where C1 �= C2 and writing out the Euler–
Lagrange equations, we find that the uniform configuration (27) is still a solution.
The energy density is given by E = C2 tan2 θ/2R2 and all other features of the
global minimum such as the period of oscillation remain unchanged.

3. GEOMETRICAL CONSIDERATIONS

The experiments that motivated this work(25) were performed on two-
dimensional sheets of deformed material. The logic behind solving the strip prob-
lem was that perhaps a two-dimensional sheet could be viewed as the outcome
of gluing many strips together in sequence. The results of trying to pursue this
idea occupy the rest of the paper. Some parts of the strip problem, such as the
representation with Euler angles, can be carried over quite literally. In addition,
we found compatibility conditions Sec. (3.2) that generalize the local constraint
Eq. (5) into two dimensions.

However, two-dimensional sheets bring into play some long-known diffi-
culties that are not present for the one-dimensional strip. Sometimes when one
specifies a metric, a sheet that possesses this metric can be constructed. Sec. 3 is
devoted to exploring cases where this occurs, and to discussing the extent to which
the surface is determined uniquely. However, sometimes no differentiable sheet
with the desired target metric exists. In this case, when one attempts to construct
a sheet with the target metric, it inevitably stretches and adopts a slightly different
metric. We discuss a numerical procedure capable of exploring surfaces of this
type in Sec. 4. One can think of the first type of surface as one that bends but does
not need to stretch, and the second type of surface as one that has in-plane stresses
that cannot be removed even when it relaxes to its ground state.
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As preparation for the study of two-dimensional sheets, we summarize some
basic facts concerning the differential geometry of surfaces so as to establish
notation and conventions.

Let �r = (x, y, z) be a point in three-dimensional Euclidean space, where x ,
y, and z are the usual Cartesian coordinates with respect to a fixed laboratory
frame. A surface may then be defined in parametric form by

�r = �r (u, v) = (x(u, v), y(u, v), z(u, v)) (32)

where u and v are parameters whose range is not specified for the moment.
Throughout this section, derivatives will be abbreviated by ∂1 = ∂/∂u and ∂2 =
∂/∂v. The elements of the metric tensor are then defined from

gαβ = (∂α�r ) · (∂β�r ). (33)

A second fundamental form (tensor) is defined as follows: Let r̂3 = r̂3(u, v)
be the unit vector that is perpendicular to the surface at point (u, v) and varies
continuously with u and v. The elements of the second fundamental form are then
given by

dαβ = r̂3 · ∂α∂β�r . (34)

The two symmetric tensors gαβ and dαβ play a significant role in the theory of
surfaces, as is apparent in standard texts.(6,22)

3.1. Trumpets

In order to gain familiarity with the types of surfaces studied in Sec. 4, we
first consider an elementary example defined by

�r = ρ(v)(cos uê1 + sin uê2) + ζ (v)ê3, (35)

where ê1, ê2, and ê3 are constant unit vectors along the three axes of the laboratory
frame, while ρ(v) and ζ (v) are functions of v alone, and are further restricted by
the condition

ρ ′2 + ζ ′2 = 1, (36)

where the primes indicate derivatives with respect to v. The surface is thus specified
by the single function ρ = ρ(v). In particular, the metric tensor is then given by

g11 = ρ2, g22 = 1, g12 = 0. (37)

In order to calculate the second fundamental form, we first construct the orthonor-
mal trihedral

r̂1 = 1

ρ
∂1�r = − sin uê1 + cos uê2
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r̂2 = ∂2�r = ρ ′(cos uê1 + sin uê2) +
√

1 − ρ ′2ê3 (38)

r̂3 = =
√

1 − ρ ′2(cos uê1 + sin uê2) − ρ ′ê3,

where r̂1 and r̂2 are tangent to the surface, while r̂3 = r̂1 × r̂2 is perpendicular.
The second fundamental form is then calculated from Eq. (34) to yield

d11 = −ρ
√

1 − ρ ′2, d22 = ρ ′′
√

1 − ρ ′2

d12 = d21 = 0 (39)

A special case of this class of surfaces is the ordinary cylinder with unit
radius, obtained with the choice ρ = 1 and ζ = v. The metric is then Euclidean
(g11 = 1 = g22, g12 = g21 = 0) and the elements of the second fundamental form
are d11 = −1, d22 = 0, d12 = d21 = 0.

A more interesting example is obtained by the choice

√
g11 = ρ = 1 + 1

1 − v
, (40)

which leads to an axially symmetric surface with variable radius ρ = ρ(v) and
height z = ζ (v) calculated from Eq. (36). This surface reduces to the ordinary
cylinder in the limit v → −∞, but its radius increases with increasing v (or z).
It would appear that the radius of this surface would eventually grow to infinity
as v → 1. Actually, this limit cannot be obtained because of a singularity that
develops earlier when ρ ′2 = 1 or v = 0. The actual surface is illustrated in Fig. 4;
we will refer to it as the trumpet. It starts as a cylinder with radius ρ = 1 and
terminates at a cusp with radius ρ = 2. Near the cusp the elements of the second
fundamental form calculated from Eq. (39) approach the characteristic limits
d11 → 0, d22 → ∞, while d12 vanishes everywhere.

This trumpet may be considered the most primitive model of a flower. How-
ever, a true flower is a trumpet that is allowed to grow beyond the cusp, and displays

Fig. 4. Rendering of the surface produced by the metric in Eq. (40) for u ∈ [0, 2π ], and v ∈ (−∞, 0].
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numerous ripples, because biology and elasticity dictate slight modifications of the
metric and second fundamental form needed to evade the singularity. Geometry
alone cannot resolve what happens as one tries to push a surface beyond such a
cusp, but may help to classify the possibilities.

Hence, in the remainder of this section, we formulate an inverse problem of
sorts that will enable us to interpret the explicit results of Sec. 4.

3.2. Compatibility Conditions

In order to interpret experiments on surfaces with distorted metrics, what we
would most like to do would be to construct the surface quickly and directly from
the metric. We restrict our attention to surfaces for which the coordinate curves
form an orthogonal net, which means that they are characterized by a metric of
the form

g11 = g11(u, v), g22 = g22(u, v), g12 = 0. (41)

The more general case can also be treated, but all the calculations are more cum-
bersome, and are not needed for the examples we have in mind. The corresponding
orthonormal trihedral is then defined from

r̂1 = ∂1�r√
g11

, r̂2 = ∂2�r√
g22

, r̂3 = r̂1 × r̂2. (42)

We now consider the elementary integrability condition

∂1∂2�r = ∂2∂1�r
⇒ ∂1(

√
g22r̂2) = ∂2(

√
g11r̂1) (43)

⇒ (∂1
√

g22)r̂2 + √
g22∂1r̂2 = (∂2

√
g11)r̂1 + √

g11∂2r̂1

Contracting both sides of Eq. (43) with the unit vectors r̂1, r̂2 and r̂3 in turn we
obtain

(r̂1 · ∂1r̂2) = ∂2
√

g11√
g22

(44)

(r̂2 · ∂2r̂1) = ∂1
√

g22√
g11

(45)

√
g11(r̂3 · ∂2r̂1) = √

g22(r̂3 · ∂1r̂2). (46)

We observe that for
√

g11 = 1 − v/R, g22 = 1, Eq. (44) reproduces Eq. (5). As in
Sec. 2, we parameterize the trihedral with the Euler angles of Eq. (7) to obtain the
three fundamental equations

cos θ ∂1φ + ∂1ψ = −∂2
√

g11√
g22

(47)
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cos θ ∂2φ + ∂2ψ = ∂1
√

g22√
g11

(48)

√
g11(− sin θ cos ψ ∂2φ + sin ψ ∂2θ )

= √
g22(sin θ sin ψ ∂1φ + cos ψ∂1θ ), (49)

which will provide the basis for subsequent development. It should be noted that
the compatibility conditions Eqs. (47)–(49) are formulated entirely in terms of the
metric tensor gαβ and that the elements of the second fundamental form do not
appear explicitly. In fact, once a solution of Eqs. (47)–(49) is available, dαβ can be
computed from Eq. (34) as

d11 = √
g11(r̂3 · ∂1r̂1)

= √
g11(− sin θ cos ψ ∂1φ + sin ψ ∂1θ )

d22 = √
g22(r̂3 · ∂2r̂2)

= √
g22(sin θ sin ψ ∂2φ + cos ψ ∂2θ )

d12 = √
g22(r̂3 · ∂1r̂2)

= √
g22(sin θ sin ψ ∂1φ + cos ψ ∂1θ ) (50)

d21 = √
g11(r̂3 · ∂2r̂1)

= √
g11(− sin θ cos ψ ∂2φ + sin ψ ∂2θ )

Note that the symmetry condition d12 = d21 is not explicit in Eqs. (50) but is
enforced by Eq. (49).

As an elementary illustration, we return to the case of a trumpet characterized
by a metric of the form

√
g11 = ρ(v),

√
g22 = 1, and g12 = 0. It is straightforward

to verify that

ψ = 0, φ = π/2 + u, cos θ = −ρ ′, sin θ =
√

1 − ρ ′2 (51)

is a solution of Eqs. (47)–(49) that reproduces the trumpet discussed earlier in this
section.

Our aim in Sec. 3.3 is to employ Eqs. (47)–(49) as evolution equations
actually to calculate trumpet-like solutions for the general class of metrics given
by Eq. (41) through the solution of an initial value problem. Connections with the
standard Darboux equation and Gauss–Codazzi compatibility conditions(6,26) are
briefly discussed in Sec. 3.4.
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3.3. Evolution Equations

Consider the trumpet with metric given by Eq. (40). When v → −∞, the
surface approaches a cylinder. Can one choose some large negative value of v,
suppose that the surface for this value of v is a circle, and integrate towards v = 0
knowing nothing but the metric and reconstruct the trumpet? The answer is yes.
One can find three first-order equations that express the changes of θ , ψ , and
φ with respect to v and integrate them forward as if v is a time variable. Thus
we accomplish the goal of establishing an evolution equation whose boundary
conditions require only the shape of a surface along a line.

Finding the equations is not completely straightforward. Eqs. (47)–(49) con-
sist in three first-order partial differential equations for the three Euler angles
θ , ψ , and φ. However since Eq. (47) involves derivatives in u only, algebraic
manipulation alone does not allow one to solve for ∂2θ , ∂2ψ , and ∂2φ.

Note that derivatives of φ appear in Eqs. (47)–(49) but not φ itself. One can
use Eqs. (47) and (48) to express ∂1φ and ∂2φ in terms of the other two Euler
angles. Removing φ in this way is only permitted, however, if after solving for ∂1φ

and ∂2φ one imposes the condition ∂1∂2φ = ∂2∂1φ to obtain

(
√

g11 g22∂1ψ + √
g11∂2

√
g11)∂2θ − √

g22G cot θ

= (
√

g11 g22∂2ψ − √
g22∂1

√
g22) ∂1θ, (52)

where

G =
√

g11

g22
(∂2

√
g11) ∂2

√
g22 + 1√

g11
(∂1

√
g11)∂1

√
g22

− ∂1∂1
√

g22 −
√

g11√
g22

∂2∂2
√

g11 (53)

One now solves Eqs. (47)–(49) and Eq. (52) for ∂2θ , ∂2ψ , ∂1φ and ∂2φ.
In expressing the results, it is convenient to use the expressions for the second
fundamental form in Eq. (50) as shorthand for combinations of derivatives. One
obtains

∂2θ = d12∂1θ + G cos ψ

d11
(54)

∂2ψ = 1

d11

[
∂1

√
g22√

g11
d11 − cos θ d12∂1φ − G sin ψ cot θ

]
(55)

∂2φ = ∂1
√

g22

cos θ
√

g11
− ∂2ψ

cos θ
. (56)
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These are the basic evolution equations for the Euler angles. Whenever ∂1φ ap-
pears, it should be viewed as shorthand for

∂1φ = −
√

g22∂1ψ + ∂2
√

g11√
g22 cos θ

. (57)

The procedure for constructing surfaces progresses as follows: We specify
the values of θ , ψ , and φ for all u and some value of v = v0. To construct a
trumpet, we choose v0 sufficiently negative so that we can use the expressions
for cylinder ψ = 0, φ = π/2 + u, and θ = π/2 to set initial values of the Euler
angles for u ∈ [0, 2π ]. Next, we calculate the right hand sides of Eqs. (54) using
these initial values, and update each Euler angle through explicit Euler integration,
θ (v + dv) = θ (v) + ∂2θ dv. It is easy to construct the surface �r . To do so, form
the trihedral from the Euler angles through Eq. (7). Then from Eq. (42) one has

∂2�r = √
g22r̂2, (58)

which means that if the surface is specified on the line v = v0, its future evolution
can be determined as well.

The integration process is extremely rapid. We have used it in order to
reproduce the trumpet depicted in Fig. 4. The process of integrating forward
terminates at v = 0 because d11 vanishes there for all u, and two denominators in
Eqs. (54) become singular.

We have also used the equations to generate surfaces from more general
metrics, and a characteristic result is exhibited in Fig. 5. Here we chose the metric

√
g11 = 1 + 1

1 − v

(
1 + 1

2
cos 3u

)
; g22 = 1. (59)

The surface has a slight three-fold modulation that is quite clear if one plots Euler
angles, but rather faint when one looks at the surface itself. As in the case of the
trumpet, the integration process stops near to v = 0. Examining the reason, one

Fig. 5. Three-fold trumpet produced by integrating Eqs. (54) forward from a cylindrically symmetric
initial condition at v0 = −2π , using the metric in Eq. (59).
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finds that once again d11 vanishes. This three-fold trumpet does not have cylindrical
symmetry, and d11 does not vanish simultaneously for all u. Instead, it first vanishes
for three values of u. However, the evolution equations are singular and cannot be
integrated past this point. Our original hope had been to use evolution equations to
obtain flower-like solutions such as the one displayed in Fig. 8. Unfortunately, the
rippling edge necessarily involves an oscillation in curvature, and d11 must oscillate
in sign where ripples are visible. Thus our integration procedure is intrinsically
unable to obtain solutions of this type. However, through trials with the evolution
equations, we have found that they successfully create surfaces over ranges of u
and v where d11 does not vanish.

We note in closing that it is not difficult to generalize the equations of this
section to the case where g12 �= 0. One takes

r̂2 = ∂2�r/
√

g22 − (r̂1/
√

g22)∂2�r · r̂1√
1 − g2

12/g11g22

(60)

and otherwise proceeds as before. The resulting expressions are lengthy, and as
we have not made use of them, we do not record them here.

3.4. Gauss-Codazzi and Darboux

Our treatment has been based upon the compatibility conditions Eq. (43)
which are formulated purely in terms of the metric tensor gαβ , while the second
fundamental tensor is a derived quantity displayed in Eq. (50). By contrast, both
tensors gαβ and dαβ appear as fundamental variables in the formulation of the
Gauss–Codazzi compatibility conditions employed in standard treatments.(6) It
would then be interesting to demonstrate that the Gauss–Codazzi equations can
actually be derived starting from the compatibility conditions Eq. (43) and the
definitions Eq. (50).

Without going through the laborious calculations needed to establish this
equivalence, we merely state here all three Gauss–Codazzi equations in symbolic
form:

d22 = d2
12 + R1212

d11

∂2d11 = ∂1d12 + d1γ

{ γ

12

}
− d2γ

{ γ

11

}
(61)

∂2d12 = ∂1d22 − d2γ

{ γ

12

}
+ d1γ

{ γ

22

}
,

where { γ

αβ
} are the Christoffel symbols. Eqs. (61) are again written in the form of

evolution equations and can be solved with initial conditions starting at v → −∞
given the ordinary cylinder values d11 = −1, d22 = 0 and d12 = 0. Once a solution
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of Eqs. (61) is obtained at some finite v, the actual construction of the surface
proceeds through the solution of a compatible system of linear equations: see
Eqs. (39.8) of Ref. 6.

Finally, we return to the connection between the evolution equations we have
derived, and the classic construction due to Darboux and described by Spivak,(26)

Chapter 11. Darboux’s equation is a second-order differential equation for the
height z of a surface as a function of the coordinates u and v. It is hyperbolic or
elliptic depending upon the sign of the Gaussian curvature; for the surfaces we
consider where the Gaussian curvature is negative, it is hyperbolic. To employ
these equations one must provide initial data on z and one derivative along some
line. For example, one could integrate the equations and construct a surface if
one knew z(u, 0) and ∂1z(u, 0) for u ∈ [0, 1]. However, these boundary conditions
are not natural, particularly since the components x(u, 0) and y(u, 0) are only
determined at the end of the calculation. It is much more natural to begin with the
shape of the surface along a line, x(u, 0), y(u, 0), z(u, 0), rather than just one of
these components and its derivative, and we showed in Sec. 3.3 how this can be
accomplished.

For an orthogonal net, the Darboux equation takes the form

∂2z = p

∂2 p =
(
∂1 p −

{
1

12

}
∂1z

)2
+ R1212[(1 − p2) − (∂1z)2/g11]

∂2
1 z −

{
1

11

}
∂1z −

{
2

11

}
p

. (62)

From the first of the Gauss formulas (Ref. 26, p. 207) note that the denominator
on the right hand side of Eq. (62) is proportional to d11. Therefore the vanishing
of d11 appears in all formulations to diminish the possibility of evolving surfaces
from metrics.

4. GROUND STATE FOR FLOWERS

4.1. Numerical Technique

We now return to techniques employed recently(19) for the construction of
surfaces through minimization of an elastic energy functional, and examine again
the results in light of what we learned in Sec. 3. We begin by defining more
carefully than has been done previously the problem that needs to be solved. In
rough outline, one wants to take a thin flat sheet of material, impose a new metric
gαβ upon it, and ask how it deforms in response. A more precise specification of
the problem follows:

Differential geometry describes a mapping between two spaces: a reference
configuration described by variables (u, v), and a surface described by �r (u, v).
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Experiments on deformed surfaces are performed by taking a flat sheet of material,
deforming it in some controlled way, and then allowing the material to buckle in
space. To construct a numerical model of the system we will first describe the
reference state, corresponding to undeformed material, and then a discrete set of
variables that describes a sheet of material moving about in three dimensions.

The experimental reference state consists in a flat slab of material, much wider
and longer than it is thick. Imagine therefore positions in a thin sheet described
by (x, y, z), where z ∈ [0, t], and the thickness t is small. Pick N points within
this sheet, and label them by �r0

i = (xi , yi , zi ), where i ranges from 1 to N . In
practice, we will take these points to sit on regular lattices, but they could be
randomly distributed. Each point �r0

i has a number of near neighbors: label these
near neighbors with j ∈ n(i). Describe the vector between two near neighbors by
�r0

i j = �r0
j − �r0

i . We can now write down an energy functional which is constructed
precisely so that its ground state gives back this reference configuration. This
functional is defined on a new collection of variables �ri , where again i ranges from
1 to N , and the neighbor list j ∈ n(i) is the same as in the reference configuration.
Now, however, the points �ri are free to move anywhere in three-dimensional space.
One can think of them as describing arbitrary deformations of the original thin
sheet. If a particle i has particle j as a neighbor in the reference configuration,
then particle j remains in the list of neighbors no matter how the sheet deforms.

The significance of neighbors is provided by an energy functional that depends
upon the squared distance between pairs of neighbors. Define �ri j = �r j − �ri ; then

U0 = 1

4

∑
i j

(|�ri j |2 − |�r0
i j |2

)2
. (63)

By construction this energy functional has the property that if every particle �ri

returns to the reference location �r0
i , then the energy is zero. This ground state is

not unique, for the energy is also unchanged if the locations of all the particles are
rotated and translated in three-dimensional space, as when one picks up a piece
of cardboard and translates and rotates it. Depending upon details involving the
numbers of neighbors of each particle, there may be additional degeneracies in
the ground state as well, but we will not worry about this point right now.

Our numerical model for deforming the sheet is to go to each bond and stretch
it so that the square distance between near neighbors i and j adopts the new value
l2
i j . Thus we have the energy functional

U = 1

4

∑
i j

(|�ri j |2 − l2
i j

)2
, (64)

and direct minimization of U has been employed to obtain most of the three-
dimensional figures in this paper.
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In order to connect Eq. (64) with the discussion in the previous sections, we
must explain the connection between bond lengths li j and metrics. We use the
following prescription. For each bond i j , choose values of u and v through

ui j = ê1 · (�r0
i + �r0

j

)
/2; vi j = ê2 · (�r0

i + �r0
j

)
/2. (65)

In other words, take u and v to be the x and y coordinates of the midpoints of bonds
in the reference configuration. We define a target metric through three functions

gt
11(u, v), gt

22(u, v), and gt
12(u, v). (66)

One could choose, for example the functions in Eq. (37) if one wanted to recover
a trumpet. Using the target metric, one obtains a new equilibrium length squared
l2
i j for the bond between points i and j through

l2
i j =

∑
αβ

�r0α
i j gt

αβ(ui j , vi j )�r0β

i j . (67)

So, for example, if a bond in the reference configuration lies along the x axis
at position (u, v) given by Eq. (65), its new length is

√
gt

11(u, v). The reason
that we call gt

αβ the target metric rather than the metric is that one can put any
collection of particle locations one wishes into the functional Eq. (64), not just
particle locations that correspond to surfaces with metric gt

αβ . Thus the metric of
the surface obtained through numerical minimization may in principle be different
from the target. We will be attempting to determine whether the ground states of
U produce surfaces whose metric equals the target metric.

One might wonder why U involves squares of bond lengths, rather than
(ri j − li j )2. The answer is that Eq. (64) leads to conventional nonlinear elasticity
in the continuum limit, while the alternative does not. To obtain the continuum
limit, let �r (u, v) be a continuous vector field, and write

�ri j ≈ (�r0
i j · �∇)�r . (68)

Recalling Eq. (33), substitute Eq. (68) into Eq. (64) to obtain

U = 1

4

∑
i j

⎡
⎣∑

αβ

�r0α
i j

(
gαβ − gt

αβ

)�r0β

i j

⎤
⎦

2

; (69)

that is, the energy is given by subtracting the target metric from the actual metric,
and vanishes when the two are equal. From Eq. (69) one sees that the appropriate
generalization of the Lagrangian strain tensor to situations with target metrics is

Eαβ = 1

2

(
gαβ − gt

αβ

)
. (70)

If the target metric is a unit tensor, E reduces to the conventional Lagrangian strain
tensor of nonlinear elasticity, and when deformations are small it reduces further
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to the strain tensor of linear elasticity. One can write

U =
∑

i j

⎡
⎣∑

αβ

�r0α
i j Eαβ�r0β

i j

⎤
⎦

2

. (71)

For a particular arrangement of mass points, one can perform the sums over �r0 and
obtain a specific quadratic functional depending upon the components of E .(19)

We do not need these expressions here and will not pursue them further.
However, we will spell out the particular reference configuration �r0

i that has
been used to produce results for this paper. It consists in either one or two layers of
a triangular lattice. To be completely explicit, use three integers lmn to describe
the point locations rather than the single index i :

�r0
lmn = (1, 0, 0)l +

(
1

2
,

√
3

2
, 0

)
m +

(
1√
3
, 0,

√
2

3

)
n, (72)

where l and m range over positive and negative integers, and n equals 0 to produce
a single layered structure, or ranges over 0 and 1 to produce a two-layered structure.
In the two-layered structure, each particle has nine nearest neighbors, each at unit
distance; six with the same value of n on the same horizontal sheet, and three with
a different value of n on a different horizontal sheet. In these crystalline structures,
the near neighbors of particle i are all the particles j for which |�r0

i j |2 = 1.
We record one final technical point about the numerical techniques. Given

particle locations �ri , we will want to view the particles as describing a continuous
surface, and to construct its metric. To do so, focus on the lower sheet of particles
(n = 0 in Eq. (72)) and label the neighbors of particle i as in Fig. 6. Denote by
δr2

0 the square distance from point i to the neighbor located at 0 in the figure and

Fig. 6. Enumeration of neighbors surrounding point i , used to describe the construction of numerical
metrics in Eq. (74). The diagram shows the particles sitting in the reference configuration �r0

i described
by Eq. (72).
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so on for the remaining five neighbors. Then we have numerical representations
of the metric

g11 = δr2
0 + δr2

3

2

g22 = δr2
1 + δr2

2 + δr2
4 + δr2

5 − δr2
0 /2 − δr2

3 /2

3
(73)

g12 = δr2
1 − δr2

2 − δr2
4 + δr2

5

2
√

3

4.2. Numerical Experiments

The questions we wish to pose about target metrics are:

1. What are the ground states of Eq. (69)?
2. When do these ground states correspond to smooth surfaces in the con-

tinuum limit?
3. When the ground state is a smooth surface, under what conditions does

the target metric equal the metric of the surface?

Observe that ground states of Eq. (69) always exist. The functional is pos-
itive definite, and for a finite number of particles must have one or more global
minima. If the reference configuration does not have bending stiffness, however,
the resulting ground state corresponds to a nondifferentiable surface. To illustrate
this point, we use Eq. (40) as a target metric, and work on the domain

u ∈ [0, 2π ], and v ∈ [−3π, 0]. (74)

We represent the system with a reference crystal 200 columns long, 346 rows high,
but only 1 layer thick (in Eq. (72), l ∈ [0, 200], m ∈ [0, 346], n = 0). Since the
reference configuration is infinitely thin, there is no source of bending stiffness.
Using the target metric

gt
11(u, v) = 1 + 1

1 − v

gt
22(u, v) = 1 (75)

gt
12(u, v) = 0

we minimize U , and the result is displayed in Fig. 7. The total energy U has
converged below 10−2, and each bond has reached its target value to better than
two parts in 104. However, the surface is not smooth, nor is the configuration
displayed in the figure plausibly unique. As we know from Sec. 3.1, there do
exist smooth surfaces whose metric equals this target metric, but the minimization
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Fig. 7. Image of surface created by minimizing Eq. (69) for a reference crystal with 200 × 346 × 1
particles, and target metric given by Eq. (75). The surface achieves the target; the total energy summed
over all particles is less than 10−2. However, the solution is nowhere smooth, and resembles tree bark.
It can be understood as an embedding of the target metric whose first derivative is nowhere continuous.

routine under these conditions does not find them. Nash(21) showed that isometric
embeddings of 2-surfaces into 3 dimensions exist, but they are not necessarily
smooth. Venkataramani et al.(27) also discuss non-smooth surfaces of the sort
appearing in the figure.

Low energy states of Eq. (69) look very different when one moves from
reference crystals with one layer to reference crystals with two layers (In Eq. (72),
n ∈ [0, 1]). Now the system possesses some stiffness, and pays an energy penalty
for bending too rapidly. Once again minimizing Eq. (69) for the parameter range
in Eq. (74), we find the minimum energy state that is essentially the trumpet shown
in Fig. 4. The energy of this structure is 74.3; it cannot converge to zero, since
springy elastic material has been wrapped into a cylinder.

We compared the metric g as computed through Eq. (74) with the target
metric gt for the structure in Fig. 4. For each metric component, the difference is
featureless, and approximately equal to −3 × 10−2 at every point, due to a slight
compression needed to bend the inner layer of the reference crystal into a cylinder.
We conclude from the numerical calculations that the metric and target metric are
equal within numerical accuracy. We emphasize that in Sec. 3.3 we reproduced the
trumpet in Fig. 4 through evolution equations; the metric and boundary conditions
suffice to determine the surface in this case.

As a more interesting exercise in direct minimization of Eq. (69), we extend
the domain beyond the critical point and look for a solution in

u ∈ [0, 2π ], and v ∈ [ − 3π, 1
2

]
. (76)

The significance of increasing the range of v is that the theory of Sec. 3.1 is
unable to find a smooth surface for v > 0. In contrast, upon minimizing U once
more, we find the flower-like surface shown in Fig. 8. Now when we subtract the
target metric Eq. (75) from the metric actually achieved, Eq. (74), the difference
is visible, as shown in Fig. 9. The seven-fold pattern in the surface is reflected in
seven-fold oscillations in g11 and g22. The off-diagonal component of the tensor,
g12, remains zero within numerical accuracy. We conclude that in this case, no
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Fig. 8. Image of surface created by minimizing Eq. (69) for a reference crystal with 200 × 346 × 2
particles, and target metric given by Eq. (75), corresponding to a domain where v varies from −3π

to 1
2 . Once v > 0, trumpet solutions given by Eq. (35) no longer exist, and the evolution equations

in Eq. (54) are incapable of finding solutions. The minimum energy state is the smooth flower-like
surface with seven-fold symmetry displayed here. As shown in Figure 9, the metric of this surface does
not equal the target metric. Creation of this surface required long series of minimizations. The process
began by placing particles in a cylinder with a Euclidean metric, and very slowly changing the metric
until it reached the desired target value, continually minimizing the functional Eq. (69) along the way.
Attempts to find the surface more quickly resulted in higher-energy structures with creases.

smooth surface is able to reproduce the target metric, and numerical minimization
finds a metric close to the target that is capable of producing a smooth surface even
for v > 0. We see no reason that this surface should be considered unique. In all
likelihood, its details depend upon the thickness of the sheet. According to Audoly
and Boudaoud,(3) one should expect the surface to be increasingly ramified as its
thickness diminishes.

As a final exercise, we took the metric components computed numerically
and depicted in Fig. 9, inserted them into the evolution equations Eqs. (54) and
attempted to reproduce the structure in Fig. 8. This attempt was only partially
successful. The evolution equations were unable to proceed past points where
d11 approached zero. It is clearly possible for d11 to vanish without a surface
developing singular cusps at that point, but our numerical routines would require
very delicate cancellations in order to proceed past such a point.

5. CONCLUSIONS

Given a surface, it is completely straightforward to compute the metric. The
inverse problem of finding surfaces compatible with a given metric is much more
difficult. In setting out on the studies recorded in this paper, we had two goals.
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Fig. 9. Metric component deviations for the flower depicted in Fig. 8. Each panel shows a contour
plot of the difference between the metric component gαβ and the target metric gt

αβ . The off-diagonal
metric element g12 is not illustrated because its numerical values are too small to be discerned at the
scale of the figure.
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First, we wanted finally to determine the low-energy configurations of long strips
with linear gradients in metric. This we have accomplished. Second, we hoped to
determine conditions on the relatively simple metrics thought to create the shapes
of leaves and flowers(25) that would enable surfaces to be reconstructed.

In the second task we have been only partially successful. We found evolution
equations enabling construction of surfaces from initial conditions and metric
alone. However, at points when d11, a component of the second fundamental form,
vanishes, the equations become singular and cannot be integrated further. We are
unable to tell when this singularity really reflects the impossibility of creating a
surface compatible with the metric, and when it simply reflects a technical defect
in the method of construction.

Some intuitive understanding of this situation can be obtained by thinking
about a piece of paper, with flat Euclidean metric. Imagine holding the bottom
of the paper completely straight, along the u axis, while the left edge of the
paper runs along the v axis. There is an infinite number of shapes the paper can
take, which correspond to all different bends possible at different points along v

around axes parallel to u. All of these solutions have vanishing curvature in the
u direction; d11 = 0, and the evolution equations (54) accordingly are unable to
make any predictions. That is, in some cases the vanishing of d11 can correspond
to a genuine uncertainty, based upon initial conditions, concerning how the surface
should evolve.

On the other hand, for the surface in Fig. 8, the curvature d11 oscillates
in sign and therefore passes through zero, yet the surface exists. Therefore, the
vanishing of d11 can be compatible with the existence of a surface even if our purely
geometrical methods cannot find it beyond points where d11 = 0. Minimization
of Eq. (64) still produces a surface because elasticity resolves the questions that
cannot be answered by geometry.
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